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LEITER TO THE EDITOR 

The stochastic mechanics of fields in a general relativistic 
context: problems and perspectives 

Diego de Falcoi 
INFN Sezione di Napoli, Italy and Research Center Bielefeld-Bochum-Stochastics, Univer- 
sity of Bielefeld, Postfach 8640, D-4800 Bielefeld, Federal Republic of Germany 

Received 19 March 1987 

Abstract. The problem of a formulation of Nelson's stochastic mechanics of scalar fields 
in the context of general relativity is considered. The simple example of the scalar field 
in the Wightman vacuum state on the Rindler wedge is examined, the stochastic counterpart 
of the Fulling ambiguity of canonical quantisation is formulated, and the role of the 
stochastic mechanics of thermal mixtures, as formulated by Guerra and Loffredo, is 
analysed, in the spirit of Davies and Unruh, in the solution of the above ambiguity. An 
overall picture emerges which, both in the explicit example considered here and in its 
straightforward generalisations to static submanifolds of more general spacetimes, confirms 
Smolin's point of view that stochastic quantisation is a very natural conceptual frame in 
which to study the general non-covariance of the distinction between quantum and thermal 
fluctuations. 

The difficulties presented and the perspectives offered by a solution of the problem 
(posed as problem 13 in the conclusions of [ l ] )  'to formulate stochastic mechanics in 
the context of general relativity' are best exemplified by the case of the Schwarzschild 
metric: 

ds2 = - (1 - 2M/r )  d t2+  (1 - 2M/r)- '  d r2+  r2(d8*+sin2 8 dq2) .  

Examination of the curvature invariant [ 2 ]  

RaPrs R aPrs = 48 M2/ rb (1) 

shows that r = 0 is an actual singularity, while r = 2M is a coordinate singularity, which 
can in fact be eliminated by the adoption, for instance, of Kruskal coordinates [3]: 

sinh t /4M r < 2 M  
cosh t /4M r > 2 M  

cosh t /4M r < 2 M  
sinh t /4M r > 2 M  xo=  d r ) {  

p ( r )  = l(r /2M) - 11 exp(r/4M). 

t Permanent address: Dipartimento di Fisica Teorica, Facolti di Scienze, Universita di Salerno, 1-84100 
Salerno, Italy. 
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In terms of these coordinates, the exterior Schwarzschild region ( r  > 2 M ,  t E 88)  appears 
as a static proper submanifold, characterised by x’  > Ixn(, of Kruskal spacetime: 

(XO)2-(X’)2< 1 
ds’= (32M3/r) e x p ( - r / 2 M ) [ - ( d ~ ~ ) ~ + ( d x ~ ) ~ ] +  r2(deZ+sin2  13 dq’) 
(r/2 M - 1 )  exp( r / 2 M )  = ( x ’ ) ~  - (x’)’. 

At r = 2M the vectors alar,  a / a t  exchange their roles as spacelike and  timelike vectors 
(so that ‘the unseen power of the world which drags everyone forward willy-nilly from 
age twenty to forty and from forty to eighty also drags the rocket in from time coordinate 
r = 2M to the later value of the time coordinate r = 0’ [2] to be crushed then by the 
infinite tidal stress described by equation ( 1 ) ) .  Intimately related to this exchange is 
the fact that the exterior Schwarzschild wedge W, = {xi  > /x’I} in Kruskal spacetime 
is, with no  region d in its complement, in the mutual causal relationship (send and 
receive light signals) necessary to give operational meaning, with respect to W,, to the 
notion of observables localised in d. Furthermore, one cannot rule out in an  
operationally meaningful way situations in which signals (energy and  entropy) flow 
into W ,  through the past horizon xn = -XI and out of W ,  through the future horizon 
xo=x i ,  so that without any operational meaning there appears in particular the 
preparation of quantum states of fields in W, describing complete decoupling of W, 
from its complement. 

Hawking [4] has recognised that, in the quite generic situation of spacetime 
singularities under the ‘censorship’ of event horizons, physically realisable states of 
the quantum field algebra on, say, Ws are to be considered as those for which the 
degrees of freedom of the field ‘behind the horizon’ appear as a ‘thermal reservoir’. 
This recognition has introduced in physics a second instance (the first being, of course, 
quantum mechanics) in which probabilistic notions impose themselves for much more 
fundamental reasons than accidentally partial knowledge of the system. As observed 
by Smolin [5,6], Nelson’s stochasticmechanics [ 1 1  (considered here in its generalisation 
to fields given by Guerra and Ruggiero [7]) presents itself, precisely because it treats 
quantum fluctuations themselves in ordinary classical probabilistic language, as a 
natural framework in which to attempt a synthesis of the above two instances. 

The explicit example we consider here is the quantum theory on Minkowski 
spacetime of a scalar field $, restricted to the Rindler wedge [8] W , ,  for which, relative 
to the vacuum state a, Hawking’s ‘thermal ansatz’ at the Davies-Unruh [9, 101 tem- 
perature has been shown by Sewell [ l l ]  to be an  intrinsic structural property of a 
theory satisfying Wightman axioms. A similar scenario has been analysed from the 
axiomatic point of view [ l l ]  for a class of spacetimes including the Schwarzschild 
wedge in Kruskal spacetime and  examined by scaling arguments for states of quantum 
fields on a gravitational background satisfying the Haag-Narnhofer-Stein [ 12, 131 
conditions of local definiteness and local stability. 

In considering such structural properties in the language of stochastic field theory 
(the analysis of whose detailed mathematical structure is just now beginning [ 141) we 
note the lack of stochastic analogues of such deep results as the Reeh-Schlieder [ 151, 
Tomita-Takesaki [ 161 and Bisognano-Wichman [ 171 theorems which are included in 
Sewell’s arguments (the attempt to foreshadow the form of such stochastic analogues 
is, in fact, the main motivation of this research). This forces us to restrict ourselves 
to the simplest explicit example available; the lack of mathematical depth and generality 
imposes, however, in stochastic field theory, a sharper operational understanding of 
the problems and the results of an  analysis of stochastic fields in non-inertial frames. 
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It is in particular suggestive to read the result of the discussion that follows (equation 
( 6 ) )  as a simple ‘stochastic form of the law of inertia’ [ 5 ] .  Inertial frames are those 
in which total fluctuations are a minimum (the Guerra-Ruggiero [ 71 coincidence of 
the ground-state process with the Euclidean process being a signal of this minimality); 
in general non-inertial frames ‘thermal’ fluctuations appear superimposed onto the 
minimal quantum level. 

We start by reviewing some elementary kinematical facts [2]. 
Let A ( r )  be a world line in (for notational simplicity, two-dimensional) Minkowski 

spacetime M2, parametrised by proper time 7. At each point on this world line a 
normalised timelike vector 

U( r )  = dA( r ) / d r  

and a normalised spacelike vector 

4.) = ( l / g )  dU(r) /dr  

(where g ( r )  = ( d u / d r ) ( d u / d r ) ,  so that U U = 1) are available and U .  U = 0. 
Each event P in M2 for which there exists a unique rp such that 

( P  - A(TP))U(TP) = 0 

is uniquely determined by its ‘coordinates in the moving frame carried by the observer 
A( 7)’: 

( 4  r ) =  ( T P ,  ( P - A ( r p ) )  U(7P)). 

Suppose, in particular, g( r )  = constant = g. The above coordinates of P are then, with 
the coordinates (x”, X I )  assigned to P (by essentially the same operational procedure) 
by an inertial observer I ( r )  such that 

I = A  d l / d r  = d A / d r  for r=O 

in the relation 

x” = ( l / g  + r )  sinh gt x i  + l / g  = ( l / g +  r )  cosh gt. 

The above notational scheme has been momentarily adopted here both to stress the 
Rindler-Scharzschild and Minkowski-Kruskal analogies and to make the coincidence 
of the inertial and non-inertial coordinates evident in the limit g + 0. 

A space translation X I  + x1 + l / g  and the renaming 

( V g +  r )  = 5 g t = 7  

sets the above coordinate relations in the conventional Rindler form: 

xo=5s inh . r  x’ = .$ cosh r. 

Notice that 

d s 2 =  -(dxo)2+(dx’)2=-.$2 d r 2 + d t 2  

a2 a2 I a’ a2 1 a 0 = -- ,+-+- -. 
axo ax t2 a7 a t 2  6 a t  

8: P E  w, = {xi  > IXOI} + 8( P )  = ( r , t )  

The fact that a(xo, x ’ ) / ~ ( T ,  6) = .$ so that the Rindler chart 
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becomes singular on a W,, reflects of course the fact that the above procedure to define 
non-inertial coordinates becomes operationally meaningless. This is due to the lack 
of mutual causal relationships for events which are, with respect to the hyperbolic 
world line A(T) ,  on opposite sides of its asymptotes which therefore act as event 
horizons. 

The above considerations have been reviewed in all their elementary details in 
order to show that the spacetime manifold WR has, considered in its own right, precisely 
the same operational meaning and limitations as the exterior Schwarzschild region 
W,, again considered by itself. 

We now set up the following problem. Find a Gaussian stationary random field 
(P*(T ,  5) on WR such that: 

( I )  the Markov property is satisfied by its dependence on T ,  

(11) the Klein-Gordon equation 

is satisfied, the second derivative with respect to T being taken in the symmetrised 
smoothed sense of Nelson [ 181 

D’, =;(D:D;+ D;D:) 

where 0: are mean forward (+) and backward (-) derivatives with respect to T,  and 
(111) the scale of the randomness of the time evolution in T is set by the stochastic 

analogue of the equal-time commutation relations [ 191 

E((P*(T, ~)(D;-D:)(PR(T, 5 ’ ) ) = @ ( 6 - 6 ’ ) .  
The above conditions are as literal a translation on WR of stochastic field quantisa- 

tion on the whole of M2 (in the approach of [7,20]) as is Fulling’s discussion [21] of 
canonical field quantisation. We will see, of course, that the same problems appear 
in the stochastic language. 

The problem posed above has a unique solution of the form 

(P . / (T ,  5) = j”= d o  q%)J1,(6) 

where the J1, are Fulling normal modes (equation ( 2 2 )  of [21]): 

$,(5)= Y ’ ( 2 w  sinh 7rw)”2Klw(m5) .  (2) 

Here the constant in front of the modified Bessel function [22] K , ,  has been chosen 
in such a way that orthonormality and completeness are, respectively, 

Another set of solutions, linearly independent from those above, of the modified 
Bessel equations which determine the $,,, has been discarded on the basis of exponential 
growth as 5 + 00. 
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The qf , being independent Gaussian Markovian stationary processes, must have 
covariance of the form [23]: 

E ( q ? ( T ) q ? ( T ’ ) )  = a ( w )  exp(-b(w)lT- ~ ’ 1 ) 8 ( w  - U ’ ) .  

b ( w )  is fixed to be equal to w by the dynamical condition I1 which imposes 

@ q t ( T ) + W 2 q t ( T )  =o. 
a ( w )  is fixed to be equal to 1/2w by condition 111 which imposes 

w f ( . r ) ( D ; -  D : ) q m )  = 1. 

Summarising, cpyp ( ~ , 5 )  is the Gaussian field on W ,  with covariance 

E ( c p , ( ~ ,  0cpYp(7‘, 5’)) = dw ~ x P ( - ~ ~ T - - ’ ~ ) I L , ( ~ ) ( C C ( ~ ’ ) / ~ W .  I: 
We compare now cp& with the result cpx of the discussion of [7,20] on the whole 

of M2, referred to an inertial chart 

Z: P E  M2+ Z( P) = (XO, x i )  

The explicit expression of the Guerra-Ruggiero covariance 

E((Pz(x0, Xi)cpx(X0’,  X I ’ ) )  

exp{i[ Ko(x”- x”) + K1(xi  -XI‘)]} 
( K O ) ~  + ( K I ) *  + m2 

= ( 2 ~ ) - ~  5 d2K 

= ( 2 . r r ) - ’ ~ , m [ ( x ~ - x ~ ‘ ) ~ +  (x i  - x ” ) ~ ] ” ~  

shows that the two stochastic processes c p 8  and cpx are different, although apparently 
constructed starting from the same local rquirements ( I ,  11,111, formulated for each 
process in the appropriate coordinates?) are different. In particular, even for events 
P and Q simultaneous for both the 9 and Z observer, it is 

E (cpsp ( P)cpYp ( 0)) f E (cpz( P )  cpx( 0) 1. 
As observed in [24], indeed, c p 8  is the stochastic process associated, in the sense of 
FCynes [25] and Nelson [18], to the Fulling state F (the one annihilated, in the 
canonical formalism, by the annihilation operators of the modes of equation (2)): 

E(cp&(A)cp&(B)) = ( E  $ ( A ) @ ( B ) F )  
while cpx is the stochastic process associated with the Wightman vacuum state a: 
E(cpx(c)cp,(D)) =(a, $(C)$(D)W 

The problem therefore emerges to find a natural way to define a Gaussian stationary 
(with respect to the Rindler time 7) random field cp on the Rindler wedge W , =  
{ T E  R, .$> 0) such that, for any two %-simultaneous events P and Q in W,,  

A, B are %-simultaneous 

C, D are Z-simultaneous. 

E(cp(P)cp(Q))  =(a, $ ( P ) $ ( Q W .  (3) 
The difficulty is, of course, in the uniqueness of the solution 
and 111, which turned out not to satisfy equation (3) .  

of conditions I ,  I1 

t The role of the analogue of condition I I I  in establishing the covariance of the normal mode amplitude is 
taken in [7,20] to the same effect by the explicit requirement that each normal mode amplitude should 
perform its ‘ground state process’. We have preferred the local condition 111, which can, apparently, be 
formulated without any reference to a globally defined ‘vacuum state’. 
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Notice that condition 111 is a condition on the diffusion coefficient of the stochastic 
evolution. This is a state-independent requirement which it is logically inconsistent 
to drop to make contact with a particular state as in equation (3) (even accepting this, 
the required changes would turn out to be different for different normal modes). 

We explore here the possibility of relaxing condition I1 in the rather minimal way 
of requiring that the field (o be constructed as a mixture of solutions of 11, with the 
required reinterpretation of condition I as in [26]. We d o  this, of course, with the 
hindsight of the Davies-Unruh-Sewell analysis and of the simple but penetrating 
observation by Jaekel and  Pignon [27] that the mixture of two solutions of the 
Newton-Nelson equation need not be a solution of the same equation. Possible 
modifications of the dynamics, in the direction of formulating a stochastic form of the 
classical K M S  boundary conditions have been analysed by Vilela Mendes [28]. 

We observe, first of all, that the field (od constructed above describes complete 
decoupling of WR from the rest of M2. Indeed, for Q E W ,  

This can be easily seen from the fact that as P = (T,() tends to the horizon a W , ,  5 + 0, 
T +  i c c ,  ( 6  eT or  5 eCr tending to a finite limit) and from the fact that 

(equation (3.27) of [12]). 
For comparision, consider the ordinary Wightman function 

W ( P ,  0) =(a, $(P)$(Q)W 
written, for P and Q in W R ,  in terms of Rindler coordinates (see the appendix) 

W ( P ,  0) = loy dwfw(T, ~ ' ) + ~ ( 5 ) + , ( 5 ' )  (4) 

where 

exp[-iw( T - T')] cos w (  T - T') 
f w ( 7 ,  7') = + 

2w w(exp pw - 1)  

with p = 257. 
The fact that 

f w ( 7 ,  7') = f w ( 7 ' ,  T + $ )  

fu( 7, 7')  = Tr[exp(-d)q*(7)q*( ~ ' ) I / T r [ e x p ( - p h l  

f i = l . 2 + !  2P 2w 2 * 2  4 cj(7) = exp(iTL)cj e x p ( - i d )  

or, more explicitly, 

with 

is, of course, just a quite explicit expression of the Davies-Unruh-Sewell thermality. 
The role of the horizon is also evident from equation (4). Only the term exp[-iw( T - 

~ ' ) ] / 2 w  appears in the Fulling two-point function 
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so that, again, 

lim F (  P, Q )  = 0. 
p-aw, 

Only the second term in equation (4) contributes to the coupling between WR and a W,. 
Relevant to our analysis is the observation, easily checked by explicit computation, 

that the second term in equation (4) can be written as the covariance of a Gaussian 
stationary process 

cos U (  T - 7’)  

w(exp pw - 1) = E (4% 7’)) 

where 

&(7) = ( J E ( w ) / w )  sin(w.r- e ( w ) )  
with O ( w )  and E ( U )  independent random variables with, respectively, uniform distribu- 
tion on ( 0 , 2 ~ )  and exponential distribution $ exp(-$E) on R+, with $ =  
(exp pw - l ) / w .  

From the formal point of view, the above observation is just Glauber’s P-representa- 
tion [29] of the thermal density matrix of a harmonic oscillator. Notice, however, that, 
defining the random field 

77% 5)  = I,: dw q % ) h ( 5 )  

the equality 

W ( P ,  O)= F(P ,  o)+~(77p(p)77p(o)) 
lends itself to a very intuitive interpretation: as opposed to the total decoupling of WR 
as described by the Fulling state F, in the Wightman state 0 (quite consistently with 
the picture of ‘energy and entropy flowing through the horizon’) the coupling of WR 
with a W ,  is mediated by a classical solution v P  of the field equation, deterministic in 
its time evolution and random only in its initial conditions, corresponding to the 
random independent assignments of energies E ( w )  and phases O ( w )  to its normal 
mode amplitudes 4E. 

Consistent with the above interpretation (or, equivalently, with the procedure 
followed by Guerra and Loffredo [26] in order to associate a stochastic process to a 
thermal state for the harmonic oscillator, by mixing with the Glauber weights the 
Nelson processes associated to the coherent states appearing in the P-representation 
of the density matrix, to the Klein-Gordon field on WR, in the Wightman vacuum 
state 0) there appears naturally associated the independent sum 

cp(p)=cp,(p)+77p(P) 

or, equivalently, 

It is, in particular, 
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As a final remark, we observe that an ansatz of this form (with of course the 
appropriate choice of the normal modes) makes sense for static submanifolds of more 
general manifolds, the numerical value of the parameter p being determined, as in 
[ 121, by the requirement that for P on the intersection of past and future horizons the 
leading contribution as Q+ P coincides with that for the flat case. 

Appendix 

Equations (4) and ( 5 )  are most easily proven starting from the Schwinger points. As 
noted in [24], Crum’s formula [22] gives the following representation of the two-point 
Schwinger function: 

d2 K 
S ( P ,  Q )  = (27r-’ 

= (2 7 r - l  KO( m Ix - y 1 )  

= lom dw 
exp( -aw)+exp[ - (2~- (~ )w]  

2w[1 -exp(-2m)]  ( 2 )  $w ( 2 ’ )  

where (6, 7) and (e’, 7’) are the polar coordinates of the points P = (x’ ,  x’) and 
Q = ( y ’ ,  y’) in the Euclidean plane and (T = 16 - 6’1 mod 27. 

Analytic continuation to real time (x’ - y’ + i(xo - y o )  + 0’, corresponding to 8 - 6’+ 
i( 7 - 7’) + O f )  gives the desired result. 
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